
WhatSecretly
Kills Your
Software
Development
Velocity
Rafał Piotrowski

Patryk Zieliński

Why are your devs always busy but nothing reaches
production?

Howmany strategic launches will youmiss before the
business loses patience?

Howmuchmoney, time, andmarket opportunity has slow
delivery already cost you?

We’ve seen it. Fixed it.

And we’ll show you how.

You’ll learn about 3 hidden slowdowns that quietly hurt
delivery ‑ and how to fix them before they derail your
roadmap:

• Why deadlines keep slipping even when everyone’s
busy.

• How code review become a bottleneck.

• What kills focus andmomentum in multi‑tasking teams.

Bringing back speed and agility.

Rafał Piotrowski
Co‑Founder, RadBrackets

rafal.piotrowski@radbrackets.com
+48 453 260 653
linkedin.com/in/piotrowskirafal/

Patryk Zieliński
Co‑Founder, RadBrackets

patryk.zielinski@radbrackets.com
+48 664 044 347
linkedin.com/in/patryk‑zielinski/

What Secretly Kills Your Software Development Velocity

Introduction
As someone responsible for delivering technology solutions to the business,
do you ever feel like your development team is always busy ‑ but somehow,
features still aren’t reaching production on time? Another deadline slips. An‑
other release pushed back. The team says, “We’re still working on it,” or “We
need a bit more time to align.” Your managers tell you it’ll be another month
to wrap things up before shipping. And just when you’re close to the finish
line, a keydeveloper leavesor aproduction issuediverts everyone’s attention.
Meanwhile, that one critical feature keeps blocking everything else, and even
thoughdevelopment has beenworking on it forweeks, there’s still nothing to
show in production.

If this sounds familiar, keep reading.

In this article, we’ll walk through three hidden but powerful reasonswhy soft‑
ware delivery slows down ‑ even in capable, well‑resourced teams. We’ll ex‑
plore the lack of a clear action plan, inefficient code review processes, and
thehiddencost of constant context switching. Most importantly,we’ll offer in‑
sights intohowto tackle these issueshead‑on ‑ so your roadmapstartsmatch‑
ing reality.

4

What Secretly Kills Your Software Development Velocity

Contents
Introduction . 4
1. Lack of a Clear Action Plan: Why Undefined Goals Slow Develop‑
ment . 6

The Cost of Undefined Solutions 6
The Danger of Unstructured Decision‑Making 7
The Need for a Shared Decision Framework 7
Cross‑Team Collaboration Is Key 8
Important Decisions Should BeMade Early, Not During Imple‑
mentation . 8

2. Code Review Conflicts: Why Inefficient Reviews Delay Progress . . 10
The Root of Slow Code Reviews 10
How to Break the PR Stalemate 11
The Business Impact of Slow PRs 11

3. The Hidden Cost of Context Switching: How Distractions Reduce
Productivity . 13

The Impact of Constant Task Switching 13
Why Context Switching Kills Productivity 14
How to Minimize Context Switching in Your Teams 14

Conclusion . 16
Key Takeaways . 16

Still missing deadlines? Let’s fix that before your next release. 17

5

What Secretly Kills Your Software Development Velocity

1. Lack of a Clear Action Plan: Why
Undefined Goals Slow Development

The Cost of Undefined Solutions
In software development, there is rarely a single “correct” solution to a
problem. Instead, multiple viable approaches exist, each carrying different
trade‑offs in terms of cost, maintainability, and long‑term impact. However,
without structured documentation, your engineers may spend excessive
time searching for an ideal solution‑often at the expense of efficiency and
budget constraints.

6

What Secretly Kills Your Software Development Velocity

The Danger of Unstructured Decision‑Making
Without a documented rationale, development teams operate in a vacuum,
leading to uncertainty and inefficiencies. When a shared vision is absent, the
following problems emerge:

• Developers question design choices midway through coding, result‑
ing in costly reversions.

• Extensive back‑and‑forth discussions, creating bottlenecks in project
timelines.

• Future teammembers struggle to understandwhy certain decisions
were made, leading to redundant work and confusion.

This lack of clarity isn’t just a technical inconvenience‑it has direct business
consequences, increasing project costs and extending delivery timelines.

The Need for a Shared Decision Framework
Tomaintain strategic alignment and ensure execution efficiency, your teams
need a structured process for decision‑making. This can take the form of:

• Refinement Notes – Summarizing the discussion around a problem
and the solutions considered.

• RFC (Request for Comments) – A structured document detailing the
problem, possible approaches, and the chosen path.

• ADR (Architecture Decision Record) – A concise record of architec‑
tural choices and the reasoning behind them.

These documents provide a single source of truth, preventing unnecessary
mid‑development debates and ensuring a common understanding across
teams.

7

What Secretly Kills Your Software Development Velocity

Cross‑Team Collaboration Is Key
Encouraging collaboration before coding begins is essential. Develop‑
ers should not make major architectural or implementation decisions in
isolation. Instead, they should consult with:

• Product Owners (POs) to ensure business requirements are met.
• TeamLeaders to validate feasibility andalignmentwithcompany‑wide
architecture.

• Developers from their own and nearby teams to identify risks and
dependencies.

By securing feedback early, you can preventmajor roadblocks and late‑stage
disputes that delay development progress.

Important Decisions Should Be Made Early, Not During
Implementation
Software development should not be a continuous debate. If core questions
about implementation choices are being raised during the implementation
phase, it’s already too late. By this point, substantial engineering effort has
already been spent, and revisiting foundational decisions introduces signifi‑
cant delays. Discussions at this stage often take place in pull requests (PRs),
where they are inefficient and counterproductive.

Instead, encourage teams to settle technical debates before implemen‑
tation begins. When documentation is finalized and all stakeholders have
aligned, developers can confidently execute without second‑guessing deci‑
sions or fearing pushback.

8

What Secretly Kills Your Software Development Velocity

No major task should start without a short Refinement Note or
RFC ‑ even half a page is enough.

Set a rule: architectural decisions must be made before imple‑
mentation, not in the middle of coding.

Do you ever look at your team and think: we could be better than
this?

9

https://radbrackets.com/letstalk.html?utm_source=ebook&utm_medium=pdf
https://radbrackets.com/letstalk.html?utm_source=ebook&utm_medium=pdf

What Secretly Kills Your Software Development Velocity

2. Code Review Conflicts: Why Inefficient
Reviews Delay Progress

The Root of Slow Code Reviews
Your engineering teams collaborate on changes through Pull Requests (PRs)
or ChangeRequests‑anessential practice that ensures codequality. However,
while necessary, this process is often inefficient. Slow PRs can partially stem
from the lack of documentation, as outlined in the previous section.

When engineers encounter a proposed solution for the first time during a PR
review, they frequently raise fundamental questions such as:

• “Why was this approach chosen?”

10

What Secretly Kills Your Software Development Velocity

• “Have you considered alternative solutions?”
• “Is this the best way to solve the problem?”

Addressing such foundational questions at the PR stage is too late. The en‑
suing discussions often become lengthy and unstructured, leading to:

• PRs with hundreds of comments, creating unnecessary complexity.
• Endless technical debates and shifting solutions, causing rework
and delays.

This results in features being delayed‑not due to actual development
complexity, but due to extended discussions that should have happened
earlier.

How to Break the PR Stalemate
WhenaPR starts spiraling into lengthy debates, encourage the team topause
the discussion and schedule a meeting. Synchronous communication
often resolves issues much faster than a back‑and‑forth comment war.
Additionally, to prevent subjective debates from consuming time, establish
a team‑wide best practices document that defines:

• Coding standards and conventions.
• Preferred architectural patterns.
• Common implementation approaches.

Once a team has aligned on these principles, PR reviews can remain fo‑
cused on correctness, security, and performance rather than personal
preferences.

The Business Impact of Slow PRs
Every delayed PR is a blocker in your development pipeline. The longer a PR
remains unresolved, the greater the risk of:

11

What Secretly Kills Your Software Development Velocity

• Missed deadlines on critical product features.
• Developer frustration leading to disengagement and burnout.
• Increased costs due to wasted engineering hours.

By fostering structuredplanning, documenteddecision‑making, andefficient
PR processes, your teams can ship faster, with fewer roadblocks and greater
confidence.

If a PR hits 20+ comments ‑ stop. Schedule a 15‑minute sync to
resolve the blockers.

Create a “HowWe Review Code” doc with conventions, preferred
patterns, and what not to argue about.

When did you last feel proud of your delivery speed?

12

https://radbrackets.com/letstalk.html?utm_source=ebook&utm_medium=pdf

What Secretly Kills Your Software Development Velocity

3. The Hidden Cost of Context Switching:
How Distractions Reduce Productivity

The Impact of Constant Task Switching
In a fast‑growingorganization, you likelyhave countlessprioritiesdemanding
your attention. Your developers experience the same challenge‑constantly
shifting between different tasks. While multitasking might seem productive
on the surface, frequent context switching has a profoundly negative impact
on efficiency.

13

What Secretly Kills Your Software Development Velocity

Why Context Switching Kills Productivity
Humans are not designed to be highly efficient at rapidly switching between
complex topics. Every time a developer is interrupted and forced to switch
tasks, they require additional time to regain focus and fully re‑engage with
their previous work. The consequences of this include:

• Loss of Deep Focus – Developers struggle to dive deep into problem‑
solving when they are frequently interrupted.

• Slower Progress – It takes additional time to reload the necessary in‑
formation and understand where they left off.

• Reduced Creativity – Constant switching prevents developers from
maintaining the mental space needed for creative problem‑solving.

How to Minimize Context Switching in Your Teams
To mitigate the negative effects of task switching, it’s crucial to create an en‑
vironment that enables developers tomaintain focus. Consider the following
steps:

• Prioritize Work Clearly – Ensure team leaders and managers commu‑
nicate the most important tasks for the upcoming days and eliminate
non‑urgent distractions.

• Encourage Focused Work Sessions – Implement practices such as
“nomeeting” blocks or deep work periods where developers can focus
without interruptions.

• Limit Concurrent Projects – Avoid assigning developers to multiple
high‑priority projects at the same time.

• Optimize Communication Channels – Encourage asynchronous com‑
munication where possible to reduce unnecessary disruptions.

14

What Secretly Kills Your Software Development Velocity

By reducing context switching, your teams can work more efficiently, main‑
tain higher‑quality output, and deliver software faster.

Start eachweekby clearly defining teamgoals ‑ no “nice tohaves.”

Block off 3 hours per day as deep work time ‑ no meetings, no
Slack, no check‑ins.

Enforce “one thing at a time” ‑ multitasking kills output.

Use async‑first communication (Slack, docs, Loom) to cut down
on disruptive pings andmeetings.

How long can you afford to move this slow?

15

https://radbrackets.com/letstalk.html?utm_source=ebook&utm_medium=pdf

What Secretly Kills Your Software Development Velocity

Conclusion
Your teammight not be broken ‑ but your delivery pipelinemight be bleeding
silently. If your roadmap keeps drifting, deadlines slip, and PRs spark endless
debates, the bottlenecks are often hidden in plain sight. Here’s what we’ve
learned after working with dozens of dev teams under pressure.

Key Takeaways
1. Lack of alignment kills speed. Document decisions before code be‑

gins ‑ not during PR reviews.
2. PRs are not the place for debates. Set standards and resolve major

questions earlier.
3. Context switching is a silent killer. Protect developer focus like it’s

your budget ‑ because it is.
4. Velocity is not effort. Busy teams ≠ productive teams.
5. No plan = slow delivery. Even great devs need clarity, not chaos.

16

What Secretly Kills Your Software Development Velocity

Still missing deadlines? Let’s fix that
before your next release.
Your teammightbebusy ‑butare theyactuallydelivering? We’ll help youspot
what’s slowing them down and show how to unblock your delivery stream.

Book a free 20‑minute call ‑ no sales talk, no strings attached, just
insights.

RadBrackets is a boutique software consultancy specializing in high‑
performance backend systems, cloud‑based architectures, and complex
integrations. The company was founded by experienced software engi‑
neers, driven by a shared passion for coding, architectural excellence, and
craftsmanship. From the beginning, RadBrackets has focused on deliver‑
ing value through deep technical expertise and a hands‑on engineering
mindset.

17

https://radbrackets.com/letstalk.html?utm_source=ebook&utm_medium=pdf
https://radbrackets.com/letstalk.html?utm_source=ebook&utm_medium=pdf

What Secretly Kills Your Software Development Velocity

Like what you read? Let’s connect on LinkedIn ‑ no strings attached.

Rafał Piotrowski, Co‑Founder, RadBrackets
rafal.piotrowski@radbrackets.com
+48 453 260 653
https://linkedin.com/in/piotrowskirafal/

Patryk Zieliński, Co‑Founder, RadBrackets
patryk.zielinski@radbrackets.com
+48 664 044 347
https://linkedin.com/in/patryk‑zielinski/

contact@radbrackets.com
https://www.linkedin.com/company/radbrackets
https://radbrackets.com?utm_source=ebook&utm_medium=pdf

18

https://linkedin.com/in/piotrowskirafal/
https://linkedin.com/in/patryk-zielinski/
https://www.linkedin.com/company/radbrackets
https://radbrackets.com?utm_source=ebook&utm_medium=pdf

	Introduction
	1. Lack of a Clear Action Plan: Why Undefined Goals Slow Development
	The Cost of Undefined Solutions
	The Danger of Unstructured Decision-Making
	The Need for a Shared Decision Framework
	Cross-Team Collaboration Is Key
	Important Decisions Should Be Made Early, Not During Implementation

	2. Code Review Conflicts: Why Inefficient Reviews Delay Progress
	The Root of Slow Code Reviews
	How to Break the PR Stalemate
	The Business Impact of Slow PRs

	3. The Hidden Cost of Context Switching: How Distractions Reduce Productivity
	The Impact of Constant Task Switching
	Why Context Switching Kills Productivity
	How to Minimize Context Switching in Your Teams

	Conclusion
	Key Takeaways

	Still missing deadlines? Let’s fix that before your next release.

